The influence of bioreactor geometry and the mechanical environment on engineered tissues.

نویسندگان

  • J M Osborne
  • R D O'Dea
  • J P Whiteley
  • H M Byrne
  • S L Waters
چکیده

A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10(-2) and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr

Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...

متن کامل

FSF Bioreactor Design Improvement, Restoration, and Testing

Rahul Kumar, Junior, Columbia University Mentors: Sharan Ramaswamy Ph.D., University of Pittsburgh Michael Sacks Ph.D. University of Pittsburgh Introduction: A bioreactor that is capable of cyclic flexure, stretch, and flow (FSF) has been previously designed and built by Engelmayr et al [1]. The bioreactor is used to implement mechanical stimuli on engineered heart valve tissue [2]. In this mec...

متن کامل

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

متن کامل

Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). How...

متن کامل

The influence of cellulose pulp and cellulose microfibers on the flexural performance of green-engineered cementitious composites

The aim of this study was to investigate the flexural behavior of engineered cementitious composites (ECCs) reinforced by cellulose pulp (CP) and cellulose microfibers (CMF). The reinforcements were obtained from chemical-mechanical treatments of Kraft paper and used in ECC mix design. Results showed that cement reinforced by CP exhibited a strain-hardening behavior in the three-point bending t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 132 5  شماره 

صفحات  -

تاریخ انتشار 2010